Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Circulation ; 147(1): 66-82, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36317534

RESUMEN

BACKGROUND: Cardiac hypertrophy increases demands on protein folding, which causes an accumulation of misfolded proteins in the endoplasmic reticulum (ER). These misfolded proteins can be removed by the adaptive retrotranslocation, polyubiquitylation, and a proteasome-mediated degradation process, ER-associated degradation (ERAD), which, as a biological process and rate, has not been studied in vivo. To investigate a role for ERAD in a pathophysiological model, we examined the function of the functional initiator of ERAD, valosin-containing protein-interacting membrane protein (VIMP), positing that VIMP would be adaptive in pathological cardiac hypertrophy in mice. METHODS: We developed a new method involving cardiac myocyte-specific adeno-associated virus serovar 9-mediated expression of the canonical ERAD substrate, TCRα, to measure the rate of ERAD, ie, ERAD flux, in the heart in vivo. Adeno-associated virus serovar 9 was also used to either knock down or overexpress VIMP in the heart. Then mice were subjected to transverse aortic constriction to induce pressure overload-induced cardiac hypertrophy. RESULTS: ERAD flux was slowed in both human heart failure and mice after transverse aortic constriction. Surprisingly, although VIMP adaptively contributes to ERAD in model cell lines, in the heart, VIMP knockdown increased ERAD and ameliorated transverse aortic constriction-induced cardiac hypertrophy. Coordinately, VIMP overexpression exacerbated cardiac hypertrophy, which was dependent on VIMP engaging in ERAD. Mechanistically, we found that the cytosolic protein kinase SGK1 (serum/glucocorticoid regulated kinase 1) is a major driver of pathological cardiac hypertrophy in mice subjected to transverse aortic constriction, and that VIMP knockdown decreased the levels of SGK1, which subsequently decreased cardiac pathology. We went on to show that although it is not an ER protein, and resides outside of the ER, SGK1 is degraded by ERAD in a noncanonical process we call ERAD-Out. Despite never having been in the ER, SGK1 is recognized as an ERAD substrate by the ERAD component DERLIN1, and uniquely in cardiac myocytes, VIMP displaces DERLIN1 from initiating ERAD, which decreased SGK1 degradation and promoted cardiac hypertrophy. CONCLUSIONS: ERAD-Out is a new preferentially favored noncanonical form of ERAD that mediates the degradation of SGK1 in cardiac myocytes, and in so doing is therefore an important determinant of how the heart responds to pathological stimuli, such as pressure overload.


Asunto(s)
Cardiomegalia , Degradación Asociada con el Retículo Endoplásmico , Animales , Humanos , Ratones , Cardiomegalia/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Miocitos Cardíacos/metabolismo , Respuesta de Proteína Desplegada/fisiología
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121659

RESUMEN

Ca2+ release from the endoplasmic reticulum (ER) is an essential event in the modulation of Ca2+ homeostasis, which is coordinated by multiple biological processes, ranging from cell proliferation to apoptosis. Deregulated Ca2+ homeostasis is linked with various cancer hallmarks; thus, uncovering the mechanisms underlying Ca2+ homeostasis dynamics may lead to new anticancer treatment strategies. Here, we demonstrate that a reported Ca2+-channel protein TMCO1 (transmembrane and coiled-coil domains 1) is overexpressed in colon cancer tissues at protein levels but not at messenger RNA levels in colon cancer. Further study revealed that TMCO1 is a substrate of ER-associated degradation E3 ligase Gp78. Intriguingly, Gp78-mediated TMCO1 degradation at K186 is under the control of the iASPP (inhibitor of apoptosis-stimulating protein of p53) oncogene. Mechanistically, iASPP robustly reduces ER Ca2+ stores, mainly by competitively binding with Gp78 and interfering with Gp78-mediated TMCO1 degradation. A positive correlation between iASPP and TMCO1 proteins is further validated in human colon tissues. Inhibition of iASPP-TMCO1 axis promotes cytosolic Ca2+ overload-induced apoptotic cell death, reducing tumor growth both in vitro and in vivo. Thus, iASPP-TMCO1 represents a promising anticancer treatment target by modulating Ca2+ homeostasis.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proliferación Celular/fisiología , Resistencia a Medicamentos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Represoras/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Células HCT116 , Células HT29 , Homeostasis , Humanos , Ratones , Ratones Desnudos
3.
PLoS Biol ; 19(12): e3001474, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34879065

RESUMEN

Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway of fundamental importance to cellular homeostasis. Although multiple ERAD pathways exist for targeting topologically distinct substrates, all pathways require substrate ubiquitination. Here, we characterize a key role for the UBE2G2 Binding Region (G2BR) of the ERAD accessory protein ancient ubiquitous protein 1 (AUP1) in ERAD pathways. This 27-amino acid (aa) region of AUP1 binds with high specificity and low nanomolar affinity to the backside of the ERAD ubiquitin-conjugating enzyme (E2) UBE2G2. The structure of the AUP1 G2BR (G2BRAUP1) in complex with UBE2G2 reveals an interface that includes a network of salt bridges, hydrogen bonds, and hydrophobic interactions essential for AUP1 function in cells. The G2BRAUP1 shares significant structural conservation with the G2BR found in the E3 ubiquitin ligase gp78 and in vitro can similarly allosterically activate ubiquitination in conjunction with ERAD E3s. In cells, AUP1 is uniquely required to maintain normal levels of UBE2G2; this is due to G2BRAUP1 binding to the E2 and preventing its rapid degradation. In addition, the G2BRAUP1 is required for both ER membrane recruitment of UBE2G2 and for its activation at the ER membrane. Thus, by binding to the backside of a critical ERAD E2, G2BRAUP1 plays multiple critical roles in ERAD.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/genética , Proteínas de la Membrana/fisiología , Enzimas Ubiquitina-Conjugadoras/fisiología , Secuencia de Aminoácidos/genética , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Unión Proteica/genética , Dominios Proteicos/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/ultraestructura , Ubiquitinación
4.
Elife ; 102021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34842525

RESUMEN

UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. The prenyltransferase has emerged as a key regulator of sterol-accelerated, endoplasmic reticulum (ER)-associated degradation (ERAD) of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids including GGpp. Sterols induce binding of UBIAD1 to reductase, inhibiting its ERAD. Geranylgeraniol (GGOH), the alcohol derivative of GGpp, disrupts this binding and thereby stimulates ERAD of reductase and translocation of UBIAD1 to Golgi. We now show that overexpression of Type 1 polyisoprenoid diphosphate phosphatase (PDP1), which dephosphorylates GGpp and other isoprenyl pyrophosphates to corresponding isoprenols, abolishes protein geranylgeranylation as well as GGOH-induced ERAD of reductase and Golgi transport of UBIAD1. Conversely, these reactions are enhanced in the absence of PDP1. Our findings indicate PDP1-mediated hydrolysis of GGpp significantly contributes to a feedback mechanism that maintains optimal intracellular levels of the nonsterol isoprenoid.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Diterpenos/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Línea Celular , Degradación Asociada con el Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Humanos , Fosfatos de Poliisoprenilo/metabolismo
5.
Cell Rep ; 36(12): 109717, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551305

RESUMEN

To maintain secretory pathway fidelity, misfolded proteins are commonly retained in the endoplasmic reticulum (ER) and selected for ER-associated degradation (ERAD). Soluble misfolded proteins use ER chaperones for retention, but the machinery that restricts aberrant membrane proteins to the ER is unclear. In fact, some misfolded membrane proteins escape the ER and traffic to the lysosome/vacuole. To this end, we describe a model substrate, SZ∗, that contains an ER export signal but is also targeted for ERAD. We observe decreased ER retention when chaperone-dependent SZ∗ ubiquitination is compromised. In addition, appending a linear tetra-ubiquitin motif onto SZ∗ overrides ER export. By screening known ubiquitin-binding proteins, we then positively correlate SZ∗ retention with Ubx2 binding. Deletion of Ubx2 also inhibits the retention of another misfolded membrane protein. Our results indicate that polyubiquitination is sufficient to retain misfolded membrane proteins in the ER prior to ERAD.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Proteínas del Choque Térmico HSP40/metabolismo , Leupeptinas/farmacología , Proteínas de la Membrana/química , Unión Proteica , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Ubiquitina/metabolismo , Ubiquitinación
6.
STAR Protoc ; 2(3): 100640, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34278330

RESUMEN

In S. cerevisiae, we identified rhomboid pseudoprotease Dfm1 as the major mediator for removing or retrotranslocating misfolded membrane substrates from the ER (endoplasmic reticulum). Long-standing challenges with rapid suppression of dfm1-null cells have limited the biochemical study of Dfm1's role in ER protein quality control. Here, we provide a protocol for the generation and handling of dfm1-null cells and procedures for studying normal vs. suppressive alternative retrotranslocation pathways. Our methods can be utilized to study other components involved in retrotranslocation. For complete information on the generation and use of this protocol, please refer to Neal et al. (2017, 2018); Neal et al. (2019); Neal et al. (2020).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Degradación Asociada con el Retículo Endoplásmico , Técnicas de Inactivación de Genes/métodos , Proteínas de la Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Degradación Asociada con el Retículo Endoplásmico/genética , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
8.
Nat Struct Mol Biol ; 28(7): 614-625, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262183

RESUMEN

p97 processes ubiquitinated substrates and plays a central role in cellular protein homeostasis. Here, we report a series of cryo-EM structures of the substrate-engaged human p97 complex with resolutions ranging from 2.9 to 3.8 Å that captured 'power-stroke'-like motions of both the D1 and D2 ATPase rings of p97. A key feature of these structures is the critical conformational changes of the intersubunit signaling (ISS) motifs, which tighten the binding of nucleotides and neighboring subunits and contribute to the spiral staircase conformation of the D1 and D2 rings. In addition, we determined the cryo-EM structure of human p97 in complex with NMS-873, a potent p97 inhibitor, at a resolution of 2.4 Å. The structures showed that NMS-873 binds at a cryptic groove in the D2 domain and interacts with the ISS motif, preventing its conformational change and thus blocking substrate translocation allosterically.


Asunto(s)
Adenosina Trifosfato/química , Pliegue de Proteína , Proteostasis/fisiología , Transducción de Señal/fisiología , Proteína que Contiene Valosina/metabolismo , Acetanilidas/farmacología , Animales , Benzotiazoles/farmacología , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Conformación Proteica , Proteínas Ubiquitinadas/metabolismo , Proteína que Contiene Valosina/antagonistas & inhibidores
9.
Mol Plant ; 14(11): 1918-1934, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34314894

RESUMEN

Eukaryotic organisms are equipped with quality-control mechanisms that survey protein folding in the endoplasmic reticulum (ER) and remove non-native proteins by ER-associated degradation (ERAD). Recent research has shown that cytokinin-degrading CKX proteins are subjected to ERAD during plant development. The mechanisms of plant ERAD, including the export of substrate proteins from the ER, are not fully understood, and the molecular components involved in the ERAD of CKX are unknown. Here, we show that heavy metal-associated isoprenylated plant proteins (HIPPs) interact specifically with CKX proteins synthesized in the ER and processed by ERAD. CKX-HIPP protein complexes were detected at the ER as well as in the cytosol, suggesting that the complexes involve retrotranslocated CKX protein species. Altered CKX levels in HIPP-overexpressing and higher-order hipp mutant plants suggest that the studied HIPPs control the ERAD of CKX. Deregulation of CKX proteins caused corresponding changes in the cytokinin signaling activity and triggered typical morphological cytokinin responses. Notably, transcriptional repression of HIPP genes by cytokinin indicates a feedback regulatory mechanism of cytokinin homeostasis and signaling responses. Moreover, loss of function of HIPP genes constitutively activates the unfolded protein response and compromises the ER stress tolerance. Collectively, these results suggests that HIPPs represent novel functional components of plant ERAD.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Oxidorreductasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Evolución Molecular , Proteínas Nucleares/metabolismo , Oxidorreductasas/genética , Reguladores del Crecimiento de las Plantas/genética , Prenilación
10.
EMBO J ; 40(15): e107240, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34152647

RESUMEN

Efficient degradation of by-products of protein biogenesis maintains cellular fitness. Strikingly, the major biosynthetic compartment in eukaryotic cells, the endoplasmic reticulum (ER), lacks degradative machineries. Misfolded proteins in the ER are translocated to the cytosol for proteasomal degradation via ER-associated degradation (ERAD). Alternatively, they are segregated in ER subdomains that are shed from the biosynthetic compartment and are delivered to endolysosomes under control of ER-phagy receptors for ER-to-lysosome-associated degradation (ERLAD). Demannosylation of N-linked oligosaccharides targets terminally misfolded proteins for ERAD. How misfolded proteins are eventually marked for ERLAD is not known. Here, we show for ATZ and mutant Pro-collagen that cycles of de-/re-glucosylation of selected N-glycans and persistent association with Calnexin (CNX) are required and sufficient to mark ERAD-resistant misfolded proteins for FAM134B-driven lysosomal delivery. In summary, we show that mannose and glucose processing of N-glycans are triggering events that target misfolded proteins in the ER to proteasomal (ERAD) and lysosomal (ERLAD) clearance, respectively, regulating protein quality control in eukaryotic cells.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Lisosomas/metabolismo , Polisacáridos/metabolismo , Animales , Calnexina/genética , Calnexina/metabolismo , Fibroblastos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Oligosacáridos/metabolismo , Procolágeno/genética , Procolágeno/metabolismo , Pliegue de Proteína , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
11.
Annu Rev Biochem ; 90: 659-679, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-34153214

RESUMEN

The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.


Asunto(s)
Colesterol/biosíntesis , Degradación Asociada con el Retículo Endoplásmico/fisiología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Animales , Dimetilaliltranstransferasa/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Humanos , Hidroximetilglutaril-CoA Reductasas/química , Hidroximetilglutaril-CoA Reductasas/genética , Ratones , Fosfatos de Poliisoprenilo/metabolismo , Procesamiento Proteico-Postraduccional , Esteroles/metabolismo , Terpenos/metabolismo , Terpenos/farmacología , Ubiquitinación
12.
Mol Cell ; 81(12): 2507-2519, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34107306

RESUMEN

Protein homeostasis mechanisms are fundamentally important to match cellular needs and to counteract stress conditions. A fundamental challenge is to understand how defective proteins are recognized and extracted from cellular organelles to be degraded in the cytoplasm. The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway is the best-understood organellar protein quality control system. Here, we review new insights into the mechanism of recognition and retrotranslocation of client proteins in ERAD. In addition to the membrane-integral ERAD E3 ubiquitin ligases, we highlight one protein family that is remarkably often involved in various aspects of membrane protein quality control and protein dislocation: the rhomboid superfamily, which includes derlins and intramembrane serine proteases. Rhomboid-like proteins have been found to control protein homeostasis in the ER, but also in other eukaryotic organelles and in bacteria, pointing toward conserved principles of membrane protein quality control across organelles and evolution.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteostasis/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Células Eucariotas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo
13.
J Virol ; 95(15): e0223420, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980593

RESUMEN

Many positive-stranded RNA viruses encode polyproteins from which viral proteins are generated by processing the polyproteins. This system produces an equal amount of each viral protein, though the required amounts for each protein are not the same. In this study, we found the extra membrane-anchored nonstructural (NS) proteins of Japanese encephalitis virus and dengue virus are rapidly and selectively degraded by the endoplasmic reticulum-associated degradation (ERAD) pathway. Our gene targeting study revealed that ERAD involving Derlin2 and SEL1L, but not Derlin1, is required for the viral genome replication. Derlin2 is predominantly localized in the convoluted membrane (CM) of the viral replication organelle, and viral NS proteins are degraded in the CM. Hence, these results suggest that viral protein homeostasis is regulated by Derlin2-mediated ERAD in the CM, and this process is critical for the propagation of these viruses. IMPORTANCE The results of this study reveal the cellular ERAD system controls the amount of each viral protein in virus-infected cells and that this "viral protein homeostasis" is critical for viral propagation. Furthermore, we clarified that the "convoluted membrane (CM)," which was previously considered a structure with unknown function, serves as a kind of waste dump where viral protein degradation occurs. We also found that the Derlin2/SEL1L/HRD1-specific pathway is involved in this process, whereas the Derlin1-mediated pathway is not. This novel ERAD-mediated fine-tuning system for the stoichiometries of polyprotein-derived viral proteins may represent a common feature among polyprotein-encoding viruses.


Asunto(s)
Virus del Dengue/metabolismo , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas de la Membrana/metabolismo , Proteínas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Virus del Dengue/crecimiento & desarrollo , Virus de la Encefalitis Japonesa (Especie)/crecimiento & desarrollo , Retículo Endoplásmico/metabolismo , Genoma Viral/genética , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina/metabolismo , Células Vero , Replicación Viral/fisiología
14.
Mol Biol Cell ; 32(7): 538-553, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33534640

RESUMEN

The transmembrane Hsp40 DNAJB12 and cytosolic Hsp70 cooperate on the endoplasmic reticulum's (ER) cytoplasmic face to facilitate the triage of nascent polytopic membrane proteins for folding versus degradation. N1303K is a common mutation that causes misfolding of the ion channel CFTR, but unlike F508del-CFTR, biogenic and functional defects in N1303K-CFTR are resistant to correction by folding modulators. N1303K is reported to arrest CFTR folding at a late stage after partial assembly of its N-terminal domains. N1303K-CFTR intermediates are clients of JB12-Hsp70 complexes, maintained in a detergent-soluble state, and have a relatively long 3-h half-life. ER-associated degradation (ERAD)-resistant pools of N1303K-CFTR are concentrated in ER tubules that associate with autophagy initiation sites containing WIPI1, FlP200, and LC3. Destabilization of N1303K-CFTR or depletion of JB12 prevents entry of N1303K-CFTR into the membranes of ER-connected phagophores and traffic to autolysosomes. In contrast, the stabilization of intermediates with the modulator VX-809 promotes the association of N1303K-CFTR with autophagy initiation machinery. N1303K-CFTR is excluded from the ER-exit sites, and its passage from the ER to autolysosomes does not require ER-phagy receptors. DNAJB12 operates in biosynthetically active ER microdomains to triage membrane protein intermediates in a conformation-specific manner for secretion versus degradation via ERAD or selective-ER-associated autophagy.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas del Choque Térmico HSP40/metabolismo , Animales , Autofagosomas , Autofagia/fisiología , Células COS , Línea Celular , Chlorocebus aethiops , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Retículo Endoplásmico/metabolismo , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Pliegue de Proteína
15.
Mol Biol Cell ; 32(7): 521-537, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33566711

RESUMEN

Before their delivery to and degradation by the 26S proteasome, misfolded transmembrane proteins of the endoplasmic reticulum (ER) and inner-nuclear membrane (INM) must be extracted from lipid bilayers. This extraction process, known as retrotranslocation, requires both quality-control E3 ubiquitin ligases and dislocation factors that diminish the energetic cost of dislodging the transmembrane segments of a protein. Recently, we showed that retrotranslocation of all ER transmembrane proteins requires the Dfm1 rhomboid pseudoprotease. However, we did not investigate whether Dfm1 also mediated retrotranslocation of transmembrane substrates in the INM, which is contiguous with the ER but functionally separated from it by nucleoporins. Here, we show that canonical retrotranslocation occurs during INM-associated degradation (INMAD) but proceeds independently of Dfm1. Despite this independence, ER-associated degradation (ERAD)-M and INMAD cooperate to mitigate proteotoxicity. We show a novel misfolded-transmembrane-protein toxicity that elicits genetic suppression, demonstrating the cell's ability to tolerate a toxic burden of misfolded transmembrane proteins without functional INMAD or ERAD-M. This strikingly contrasted the suppression of the dfm1Δ null, which leads to the resumption of ERAD-M through HRD-complex remodeling. Thus, we conclude that INM retrotranslocation proceeds through a novel, private channel that can be studied by virtue of its role in alleviating membrane-associated proteotoxicity.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Membrana Nuclear/metabolismo , Proteostasis/fisiología , Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Transporte de Proteínas , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
16.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008544

RESUMEN

Endoplasmic reticulum (ER) degradation-enhancing α-mannosidase-like protein 1 (EDEM1) is a quality control factor directly involved in the endoplasmic reticulum-associated degradation (ERAD) process. It recognizes terminally misfolded proteins and directs them to retrotranslocation which is followed by proteasomal degradation in the cytosol. The amyloid-ß precursor protein (APP) is synthesized and N-glycosylated in the ER and transported to the Golgi for maturation before being delivered to the cell surface. The amyloidogenic cleavage pathway of APP leads to production of amyloid-ß (Aß), deposited in the brains of Alzheimer's disease (AD) patients. Here, using biochemical methods applied to human embryonic kidney, HEK293, and SH-SY5Y neuroblastoma cells, we show that EDEM1 is an important regulatory factor involved in APP metabolism. We find that APP cellular levels are significantly reduced after EDEM1 overproduction and are increased in cells with downregulated EDEM1. We also report on EDEM1-dependent transport of APP from the ER to the cytosol that leads to proteasomal degradation of APP. EDEM1 directly interacts with APP. Furthermore, overproduction of EDEM1 results in decreased Aß40 and Aß42 secretion. These findings indicate that EDEM1 is a novel regulator of APP metabolism through ERAD.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de la Membrana/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo , Línea Celular , Línea Celular Tumoral , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Glicosilación , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Pliegue de Proteína , alfa-Manosidasa/metabolismo
17.
Commun Biol ; 3(1): 658, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177645

RESUMEN

Bats hibernate to survive stressful conditions. Examination of whole cell and mitochondrial proteomes of the liver of Myotis ricketti revealed that torpid bats had endoplasmic reticulum unfolded protein response (UPRER), global reduction in glycolysis, enhancement of lipolysis, and selective amino acid metabolism. Compared to active bats, torpid bats had higher amounts of phosphorylated serine/threonine kinase (p-Akt) and UPRER markers such as PKR-like endoplasmic reticulum kinase (PERK) and activating transcription factor 4 (ATF4). Torpid bats also had lower amounts of the complex of Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (p65)/I-κBα. Cellular redistribution of 78 kDa glucose-regulated protein (GRP78) and reduced binding between PERK and GRP78 were also seen in torpid bats. Evidence of such was not observed in fasted, cold-treated, or normal mice. These data indicated that bats activate Akt, Nrf2, and NF-κB via the PERK-ATF4 regulatory axis against endoplasmic reticulum stresses during hibernation.


Asunto(s)
Quirópteros/fisiología , Degradación Asociada con el Retículo Endoplásmico/fisiología , Hibernación/fisiología , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Quirópteros/genética , Quirópteros/metabolismo , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/metabolismo
18.
J Neurosci ; 40(43): 8214-8232, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958569

RESUMEN

Myelin proteins, which are produced in the endoplasmic reticulum (ER), are essential and necessary for maintaining myelin structure. The integrated unfold protein response (UPR) and ER-associated degradation (ERAD) are the primary ER quality control mechanism. The adaptor protein Sel1L (Suppressor/Enhancer of Lin-12-like) controls the stability of the E3 ubiquitin ligase Hrd1 (hydroxymethylglutaryl reductase degradation protein 1), and is necessary for the ERAD activity of the Sel1L-Hrd1 complex. Herein, we showed that Sel1L deficiency specifically in oligodendrocytes caused ERAD impairment, the UPR activation, and attenuation of myelin protein biosynthesis; and resulted in late-onset, progressive myelin thinning in the CNS of adult mice (both male and female). The pancreatic ER kinase (PERK) branch of the UPR functions as the master regulator of protein translation in ER-stressed cells. Importantly, PERK inactivation reversed attenuation of myelin protein biosynthesis in oligodendrocytes and restored myelin thickness in the CNS of oligodendrocyte-specific Sel1L-deficient mice (both male and female). Conversely, blockage of proteolipid protein production exacerbated myelin thinning in the CNS of oligodendrocyte-specific Sel1L-deficient mice (both male and female). These findings suggest that impaired ERAD in oligodendrocytes reduces myelin thickness in the adult CNS through suppression of myelin protein translation by activating PERK.SIGNIFICANCE STATEMENT Myelin is an enormous extended plasma membrane of oligodendrocytes that wraps and insulates axons. Myelin structure, including thickness, was thought to be extraordinarily stable in adults. Myelin proteins, which are produced in the endoplasmic reticulum (ER), are essential and necessary for maintaining myelin structure. The integrated unfolded protein response (UPR) and ER-associated degradation (ERAD) are the primary mechanism that maintains ER protein homeostasis. Herein, we explored the role of the integrated UPR and ERAD in oligodendrocytes in regulating myelin protein production and maintaining myelin structure using mouse models. The results presented in this study imply that the integrated UPR and ERAD in oligodendrocytes maintain myelin thickness in adults by regulating myelin protein production.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Respuesta de Proteína Desplegada/fisiología , Animales , Activación Enzimática , Femenino , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/ultraestructura , Biosíntesis de Proteínas/fisiología , Desempeño Psicomotor/fisiología , Ubiquitina-Proteína Ligasas/fisiología , eIF-2 Quinasa/fisiología
19.
Mol Biol Cell ; 31(20): 2158-2163, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32924844

RESUMEN

The ability to sense proteasome insufficiency and respond by directing the transcriptional synthesis of de novo proteasomes is a trait that is conserved in evolution and is found in organisms ranging from yeast to humans. This homeostatic mechanism in mammalian cells is driven by the transcription factor NRF1. Interestingly, NRF1 is synthesized as an endoplasmic reticulum (ER) membrane protein and when cellular proteasome activity is sufficient, it is retrotranslocated into the cytosol and targeted for destruction by the ER--associated degradation pathway (ERAD). However, when proteasome capacity is diminished, retrotranslocated NRF1 escapes ERAD and is activated into a mature transcription factor that traverses to the nucleus to induce proteasome genes. In this Perspective, we track the journey of NRF1 from the ER to the nucleus, with a special focus on the various molecular regulators it encounters along its way. Also, using human pathologies such as cancer and neurodegenerative diseases as examples, we explore the notion that modulating the NRF1-proteasome axis could provide the basis for a viable therapeutic strategy in these cases.


Asunto(s)
Factor 1 Relacionado con NF-E2/genética , Factor 1 Relacionado con NF-E2/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/genética , Degradación Asociada con el Retículo Endoplásmico/fisiología , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética
20.
Mol Biochem Parasitol ; 239: 111313, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32735998

RESUMEN

Misfolded proteins trapped in the endoplasmic reticulum (ER) are specifically recognized and retrotranslocated to the cytosol by the ER-Associated Degradation (ERAD) system and delivered to the proteasome for destruction. This process was recently described in Trypanosoma brucei (T. brucei) using the misfolded epitope tagged Transferrin Receptor subunits ESAG7:Ty and HA:ESAG6 (HA:E6). Critical to this work was the proteasomal inhibitor MG132. However, MG132 has off-target inhibitory effects on lysosomal Cathepsin L that could cause misinterpretation of turnover results. Here, we evaluate an orally bioavailable p97 inhibitor, CB-5083, for use in T. brucei. p97 is a ubiquitous protein involved in many cellular events including the membrane extraction step of ERAD. CB-5083 strongly inhibits turnover of HA:E6, with comparable protein recovery to MG132 treatment. Interestingly, little deglycosylated cytoplasmic species accumulates, though it normally emerges with MG132 treatment. This suggests that CB-5083 blocks ERAD upstream of the proteasome, as expected for inhibition of the trypanosomal p97 orthologue TbVCP. Under CB-5083 treatment, HA:E6 is also strongly membrane-associated, suggesting ER localization. Finally, we provide an experimental example where CB-5083 treatment offers clarity to the off-target effects of MG132 treatment.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Indoles/farmacología , Leupeptinas/farmacología , Pirimidinas/farmacología , Trypanosoma brucei brucei , Adenosina Trifosfatasas/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas Nucleares/antagonistas & inhibidores , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Pliegue de Proteína , Transporte de Proteínas , Proteolisis/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...